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Abstract

The lateral force on a tethered rigid sphere submerged in a turbulent, uniform shear ¯ow of water was
measured. Periodic and non-periodic motions of the sphere were observed depending on ¯owrate, shear
and sphere density. The direction of the observed lateral force was opposite to that predicted by inviscid
theory and increased in magnitude as the sphere's Reynolds numbers based on relative velocity, Re, and
average shear, Rer, increased. The lateral force was found to correlate with the product Re Rer. The
data suggests that a sign reversal occurs at relatively small values of the product Re Rer, where the
lateral force is dominated by inviscid e�ects. The results are explained assuming that the lateral forces
on rigid spheres are a consequence of two competing factors: namely, inviscid lift forces and the vortex
shedding-induced lateral forces which are dominant for higher Reynolds numbers. An estimate of the
kinetic energy in the wake was used to show that the vortex shedding-induced lateral forces correlate
with the product Re Rer and are in a direction opposite to the inviscid lift force. Combining the
experimental data of this study with similar data a correlation for the lift coe�cient of spheres in
turbulent shear ¯ows was developed. This correlation is applicable to turbulent multiphase ¯ows having
a spherical dispersed phase. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multiphase turbulent ¯ows in which dispersed particles are transported by a continuous
phase are encountered in many industrial, environmental and naval applications. A
multidimensional two-¯uid model has been developed (AlajbegovicÂ , 1994; Lahey et al., 1993) in
order to achieve prediction capabilities which are accurate enough to design equipment and
predict two-phase ¯ows. The need to limit the amount of information handled by this
mechanistic model has lead to the introduction of averaged equations which are similar to
those used for single-phase turbulent ¯ows. Unfortunately, ensemble averaging leads to a loss
of information, which has to be explicitly put back into the equations through modeling of the
more important physical phenomena (i.e., the closure process). Physical insight is needed to
identify the phenomena that are of relevance for each particular ¯ow. This fact is particularly
true for interfacial forces, which are instrumental in the determination of the dispersed phase's
distribution pro®les. From studies of bubbly, fully developed ¯ow in a vertical pipe of circular
(Wang, 1986; Wang et al., 1986) and non-circular cross-sections (Lopez de Bertonado, 1991;
Lahey et al., 1993) it has been shown that the discrete phase's distribution pro®le arises from a
balance of the lateral forces and turbulent dispersion.
In current versions of the two-¯uid model (e.g., AlajbegovicÂ , 1994; Bel Fdhila, 1991;

Grossetete, 1995) the lateral forces on a dispersed particle submerged in a shear ¯ow are
modeled assuming inviscid ¯ow around a rigid sphere. Drew and Lahey (1987, 1990) and
Auton (1987) independently derived the lateral lift force on a sphere as:

FL�inviscid� � CLrVo � vr �1�
where V is the volume of the sphere, r is the ¯uid density, vr and o are the relative velocity of
the sphere with respect to the liquid and the average vorticity at the sphere's centroid,
respectively. Drew and Lahey and Auton's analysis yield CL � 0:5 for a sphere. It must be
stressed that since the calculation was based on inviscid ¯ow, wake e�ects were not taken into
account.
For fully developed ¯ow in a vertical pipe the experimental data yield 0:01<CL<0:15 with

CL � 0:1 ®tting most of the data (Wang et al., 1986; Lahey et al., 1993). It should be stressed
that to date, CL has been considered a constant independent of the local relative velocity,
average vorticity and particle diameter. This hypothesis was used because of lack of
experimental or theoretical work to enable the quanti®cation of CL as a function of the above-
mentioned variables. The inability to solve all the details of the ¯ow require that vr and o be
evaluated using the time-averaged values of the corresponding instantaneous magnitudes. In
practice, however, the lateral force experienced by a particle will depend on the instantaneous
velocity ®eld around it rather than the average magnitudes. Thus, the motion of some bubbles
may depart signi®cantly from that predicted by Eq. (1). This fact makes Eq. (1) valid only
when enough statistics are acquired and averaged. Indeed, the values of CL successfully ®tted
to experimental data are the result of ensemble-averaging.
The works of several authors have proved the importance of this ensemble-averaging. Lance

et al. (1991) were not able to observe a lateral migration in bubbles moving through a uniform
turbulent shear ¯ow of water (o � 2:9 sÿ1), although Eq. (1) predicted a lateral migration of 8
mm at the end of the bubble trajectory through the shear ¯ow. More recently, Ford and Loth
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(1997), Taeibi-Rahni and Loth (1996) and Loth et al. (1997) have proved, through numerical
simulations and experiments, that the trajectories of individual bubbles can di�er considerably
from the predicted using Eq. (1).

Despite its success for fully developed vertical ¯ow in a pipe the two-¯uid model has yet to
be successfully extended to some other conduit ¯ow geometries. In particular, Bel Fdhila
(1991) showed that in order to ®t his experimental data of bubbly ¯ow in a vertical pipe
having a sudden expansion, the lift coe�cient, CL, would have to be negative. This result
agrees qualitatively with the measurements of Rinne and Loth (1995, 1996). Also, Aloui and
Souhar (1996a, 1996b) found a qualitatively di�erent void fraction distribution for horizontal
air/water bubbly ¯ow in a ¯at symmetric duct of rectangular cross-section undergoing a
sudden expansion. The cause of the di�erences between the void fraction distributions for
vertical axisymmetric (Bel Fdhila, 1991; Rinne and Loth, 1995, 1996) and horizontal
rectangular sudden expansions (Aloui and Souhar, 1996a, 1996b) has yet to be identi®ed.
Grossetete (1995) applied the two-¯uid model to developing bubbly ¯ow in a vertical pipe. He
found that for some injection conditions the lift coe�cient would have to be negative in order
to ®t the experimental data.

Many possible explanations of the sign reversal of the lift force have been explored. Perhaps
the most obvious possibility for bubbly ¯ows is bubble deformation. Serizawa and Kataoka
(1987) and ZÏ un (1985) found evidence that bubble size and shape a�ect the discrete phase's
distribution pro®le and plays a role in the transition from bubbly to slug ¯ow. Kariyasaki
(1987) used a novel experimental technique to measure the lift on bubbles, drops and rigid
particles for low Reynolds numbers (Re<1) and found that bubbles move in an opposite
direction to rigid particles. His results suggest that deformation plays a key role in determining
the magnitude and the direction of the lift. Indeed, Kariyasaki attributed the change in sign to
the fact that bubbles adopted an airfoil shape which was responsible for the observed
aerodynamical lift. The airfoil shape found by Kariyasaki results from an equilibrium between
tangential stresses and surface tension. Other researchers, Ervin and Tryggvason, 1994;
Tomiyama et al., 1993, 1995; Tagaki and Matsumoto, 1995, obtained similar results for the
sign of the lift force and the shape of bubbles using direct numerical simulation. However, the
need to keep track of a moving interface and the large CPU times required prevented these
researchers from producing general and consistently proven correlations for the lift force for
the di�erent non-dimensional numbers involved. Moreover, the numerical simulations cited
above were limited to low Reynolds numbers, Re<50 (based on bubble size), and thus do not
cover the range of Reynolds number of interest in most bubbly ¯ow applications (Re ' 1000).

AlajbegovicÂ et al., (1994) suggested that rotation of solid spheres under the in¯uence of
shear could reduce the magnitude of the lift coe�cient and explain his results for solid/¯uid
fully developed ¯ow in a vertical pipe. Signi®cantly, Taneda (1957), Davies (1949) and Maccoll
(1928) found evidence that solid particle rotation induces wake asymmetries, which, in turn,
may reverse the sign of lateral forces. Viets (1971) showed that an accelerating sphere in an
axisymmetric ¯ow is subjected to a lift force due to vortex shedding instabilities. This
mechanism could produce an unsteady lift force in a sudden expansion, a jet, or any other
geometry where particles are subjected to acceleration. Wake phenomena are particularly
important when the ratio of the discrete to continuous phase densities is small, as in bubbly
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¯ows, because, for this case, the vortices shed by the body deliver considerable momentum to
it.
Even for uniform ¯ows, it is well known that these forces are of major concern to o�shore

civil structures (Sarpkaya, 1979; Lighthill, 1986a, 1986b). Moreover, Jordan and Fromm (1972)
showed that a cylinder in a weak shear ¯ow experiences an instantaneous lateral force due to
vortex shedding which is approximately 16 times larger than the average lateral force produced
by shear. In view of all this evidence, it is surprising how little attention has been given by the
multiphase ¯ow community to vortex shedding and wake e�ects on lateral forces.
It is interesting to compare the magnitude of vortex shedding induced forces in an uniform

¯ow with those predicted by inviscid theory for a shear ¯ow. Inviscid theory predicts CL � 2 in
Eq. (1) for a circular cylinder (Batchelor, 1967; Auton et al., 1988) submerged in an uniform
shear ¯ow. On the other hand, the lift coe�cient due to vortex shedding in an uniform ¯ow,
CL�aero�, is usually de®ned by analogy to the drag coe�cient and it reaches maximum
instantaneous values of CL�aero� � 1 (Sarpkaya, 1979). Therefore, in order for the maximum
lateral force due to vortex shedding on a cylinder in an uniform ¯ow to be equal to the lift
force on the cylinder in a shear ¯ow, the magnitude of the average vorticity, o , has to be such
that oD=vr � 1=p, where D is the cylinder diameter. Typical sizes and relative velocities of the
particles in many multiphase ¯ow applications are D � 1 mm and vr � 0:3 m/s, respectively.
Therefore, the vorticity would have to be of the order of o � 100 sÿ1 for vortex shedding
forces and inviscid lift to be comparable. Signi®cantly, this magnitude of the shear is found
close to the pipe wall in a fully developed ¯ow (AlajbegovicÂ , 1994; AlajbegovicÂ et al., 1994). It
could be objected that in this comparison two- and three-dimensional geometries were mixed
indiscriminately. However, it is doubtful that the in¯uence of the geometry would a�ect the
order of magnitudes of the estimated vorticity, o . A similar comparison that does not mixes
di�erent geometries is carried out below.
It is well known that the helicoidal and zigzag trajectories observed in rising bubbles are due

to vortex shedding (Sa�man, 1956; Kelly and Wu, 1997; Fan and Tsuchiya, 1990). Because of
the absence of direct measurements of forces it is more convenient to compare the typical
velocities of lateral displacement for both, zigzag motion and inviscid lift. Ford and Loth
(1997) measured the amplitude and periods of the zigzag motion of bubbles having two and
three millimeters nominal diameter in a quiescent and a turbulent shear ¯ow. The average
lateral velocity of the zigzag motion ranged from 9� 10ÿ3 to 20� 10ÿ3 m/s. The lateral
relative velocity of displacement, ur, for inviscid lift in an uniform shear ¯ow can be derived
from an equilibrium balance of the drag and lift forces as, ur � �4CL=3CD�Do . The mean shear
used by Ford and Loth (1997) was o ' 3 sÿ1, which for a lift coe�cient of CL � 0:1 and a
drag coe�cient of CD � 0:44, produce a lateral relative velocity of ur � 2� 10ÿ3 m/s, which is
®ve to ten times smaller than the observed average velocity of the zigzag motion.
From the two comparisons just made, it is clear that average lateral forces due to vortex

shedding in a shear ¯ow should be expected to be at least of the same order of magnitude as
those of inviscid lift.
It is important to stress that the helicoidal and zigzag regimes are observable even in non-

quiescent turbulent ¯ows. This is con®rmed not only by Ford and Loth (1997) but also by
exploratory experiments carried out in this study. After examining the experimental evidence,
Fan and Tsuchiya (1990) suggested that the stability of the zigzag regime is due to the fact that
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it minimizes the wake size and consequently the energy dissipation. Therefore, the zigzag
regime should be understood to be a resonance phenomenon in which the bubble and the shed
vortices movements lock-in (Kelly and Wu, 1997; Fan and Tsuchiya, 1990). In fact, Fan and
Tsuchiya (1990) were able to explain relevant features of the zigzag regime by considering the
bubble and its primary, or e�ective, wake as a single rigid body, which represents a clear
indication that even for deformed bubbles, bubble-wake interactions cannot be neglected.
The stability of the zigzag regime, the evidence that forces due to vortex shedding can be

larger than forces due to inviscid lift, and the apparent reversal of the sign of the lateral forces
in sudden expansions and developing ¯ows, indicate that the current modeling of lateral forces
in the two-¯uid model is incomplete. Lateral forces due to vortex shedding, and other wake
e�ects, have not been introduced into the closure laws used by the two-¯uid model.
Unfortunately, the complex wake geometry and the di�culties associated with an analytical
treatment make lateral forces induced by vortex shedding di�cult to quantify. Even though the
wake of a ®xed sphere in both a uniform ¯ow and a shear ¯ow has been characterized
(Sakamoto and Haniu, 1990, 1995), it is not clear how the wake structure would be modi®ed
for a freely moving sphere. The problem of the interactions of the wake and its body
movement is so complex that most researchers have considered it only for the particular case
of forced oscillations in two dimensions (Stansby, 1976; Sarpkaya, 1979). Secondly, vortex
shedding induced lateral forces were expected to be averaged out of the equations of motion if
su�ciently long periods of time, or su�ciently large number of events, were considered.
It is clear that to gain the physical insight necessary to extend the two-¯uid model to other

geometries of interest it is necessary to understand and quantify the e�ects of vortex shedding
on lateral forces for blu� three-dimensional bodies. This quanti®cation is a very challenging
task for Computational Fluid Dynamics (CFD) because of the high Reynolds numbers
involved and the inherent unsteadiness and three-dimensionality of the problem, all factors that
increase computational cost. Dandy and Dwyer (1990) calculated lift and drag forces on
spheres in a uniform shear ¯ow for Reynolds numbers lower than 100. The low Reynolds
number was necessary to avoid the boundary layer separation that makes the problem
unsteady. As mentioned above, previous computer simulations of deformable bubbles have
been restricted to low Reynolds numbers for the same reason. AlajbegovicÂ et al. (1998) and
Jordan and Fromm (1972) were able to simulate the unsteady behavior of the wake produced
by a rigid blu� body because of the two-dimensionality of the problem.
Interestingly, most experimental work on the measurement of lateral forces on bubbles and

rigid spheres has concentrated on ¯ows not needing a statistical approach. This has been done
mainly through the elimination of boundary layer separation by considering only low Reynolds
numbers (Kariyasaki, 1987; Cherukat et al., 1994), or by designing levitation experiments for
which a stable equilibrium point exists (Naciri, 1992; Eichhorn and Small, 1964; Yamamoto et
al., 1993, 1995). In the later cases, lateral forces due to the shear are inferred from the
equilibrium position and the other forces of known magnitude (e.g., drag, buoyancy and
virtual mass). In the case of Naciri (1992) and Eichhorn and Small (1964), the need for a stable
equilibrium point makes it possible to consider only moderate vortex shedding instabilities and
consequently limits the range of the Reynolds number considered. Yamamoto et al. (1993,
1995) used pendants in order to create an equilibrium position through the restitutive force
introduced by the pendant rod. Considering tethered particles rather than free moving particles
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allows one to eliminate transient injection forces, which usually limit repeatability. Indeed, the
lack of repeatability over the size ranges for which the helicoidal and zigzag trajectories are
observed has been attributed to varying injection conditions in the experimental setup of
di�erent researchers (Sa�man, 1956; Fan and Tsuchiya, 1990). Due to turbulence ¯uctuations
and wake instabilities the determination of the average forces from the trajectories of free
moving solid particles in a shear ¯ow rapidly becomes prohibitively expensive. That is, except
for limiting cases of a very well controlled turbulence structure and ¯uid density much smaller
than the particle density (Yamamoto et al., 1993), the number of trajectories to be ensemble
averaged in order to achieve repeatability easily surpass the acquisition, storage and processing
capabilities of most commercially available video equipment. This fact is clearly observable in
the results of Taeibi-Rahni and Loth (1996).
Particle image velocimetry (PIV) is a promising technique for the measurement of lateral

forces, since it allows the determination of the instantaneous velocity ®eld. Therefore, the
validity of Eq. (1) (Ford and Loth, 1997) and the instantaneous forces due to vortex shedding
(Lin and Rockwell, 1996) can, in principle, be quanti®ed. Sridhar and Katz (1995) successfully
used PIV to measure drag and lift coe�cients on bubbles entrained in a vortex for small
Reynolds numbers, Re<80.
In the present study, the analysis made by Lighthill (1986b) to quantify the form of the drag

coe�cient at high Reynolds numbers was extended to the lift coe�cient. It will be shown that
the functional dependance of the average vortex shedding-induced lateral forces is of the same
form as that given in Eq. (1). Hence, the reduction from the predicted inviscid lift coe�cient,
CL � 1=2, to the lower values of CL which ®ts the existing data, may be explained by
attributing it to wake e�ects and the related vortex shedding. Moreover, this argument suggests
that the sign reversal found by Yamamoto et al. (1993, 1995) may be due to wake-induced
lateral forces being dominant over inviscid lift. This hypothesis was con®rmed by an
experiment designed to measure the lateral forces on rigid spheres submerged in an uniform
shear ¯ow.
The experiment presented herein was motivated by the desire to quantify the e�ect of vortex

shedding instabilities on the lateral forces at reasonably high values of the Reynolds numbers
based on relative velocity, Re � vrD=n, and average vorticity, Rer � oD2=n, where n is the
kinematic viscosity. A tethered pendant was used to keep the particle around an equilibrium
point, but unlike the experiments of Yamamoto et al. (1993, 1995), a statistical approach was
used to obtain the average e�ect of the vortex shedding instabilities. The amount of
information which needed to be acquired was kept to a minimum by the use of two parallel
laser beams and the acquisition of the time sequence of beams interruptions by the pendant's
thread. Therefore, with modest resources it was possible to acquire enough statistics to ensure
repeatability.
In Section 2 the average lateral lift force induced by the wake was found to follow a form

similar to that of Eq. (1). In addition, the dynamics of a pendant submerged in a uniform
shear ¯ow was examined in order to quantify di�erences in the dynamics of a free moving
particle and a tethered pendant. Sections 3 and 4 present the method used to generate a
turbulent uniform shear ¯ow and the measured average velocity ®elds, respectively. Section 5
gives an exposition of the experimental method and results of the pendant experiments carried
out for rigid spheres of di�erent size and density, for several di�erent water ¯ow rates. In
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accordance with the analysis in Section 2, the lateral forces were found to correlate with the
product of the Reynolds number, Re Rer. Finally, a comparison with the work of other
researchers was done and it is presented in this section.

2. Identi®cation of phenomena of interest

2.1. Wake in¯uence on the lateral forces for spheres in an uniform shear ¯ow

Several expressions have been proposed over the years to quantify the lateral force on a
particle in a shear ¯ow. For viscous ¯ow, Sa�man (1965, 1968) and Bretherton (1962) derived
the force on a sphere and a cylinder, respectively. However, their results will not be considered
any further because their work was only concerned with inertia dominated ¯ows. As noted
previously, Drew and Lahey (1987, 1990), Auton (1987), and Auton et al. (1988) independently
derived Eq. (1) for the inviscid lift force on a sphere. For pipe ¯ow this can be written as,

FL�inviscid� � rCLVvr

do
dr
� rCLVvro �2�

where vr is the relative velocity between the sphere and ¯uid, o is the axial velocity of the
continuous phase, and for a sphere submerged in an inviscid ¯uid, CL � 0:5. This expression
has been widely used in computer code implementations of the two-¯uid model (AlajbegovicÂ ,
1994; Lahey et al., 1993; Wang, 1986; Wang et al., 1986; Bel Fdhila, 1991), where, because of
viscous e�ects, CL was used as a ®tting coe�cient. Although the optimum value of this
coe�cient can change from one ¯ow con®guration to another, CL � 0:1 has been successfully
used for predictions of fully developed bubbly two-phase ¯ow in a vertical pipe.
The reduction of the coe�cient value from 0.5 to 0.1 has been attributed to turbulence

(Wang et al., 1986) and to the presence of a wake (AlajbegovicÂ , 1994), both of which were
neglected in the inviscid analysis. The size of the wake, which is generally of the same order as
that of the immersed object itself, is an obvious indicator that its e�ect on body forces cannot
be neglected. Moreover, it is well known that, even in uniform ¯ow, lateral forces induced by
vortex shedding cannot be overlooked in the analysis leading to the design of immersed bodies
(Lighthill, 1986b).
Unfortunately, an accurate determination of the magnitude of the lift force induced by

vortex shedding is very di�cult, the main problems being the complexity of the wake structure
and its elusiveness to an analytical treatment. However, considerations of the kinetic energy in
the wake can prove useful to identify the functional dependance of the wake-induced lateral
forces on blu� bodies. What follows is an extension to the lift coe�cient of the usual argument
accepted for justifying the functional dependance of the drag coe�cient (Lighthill, 1986b). Due
to the importance of the wake's geometry a description of it for di�erent cases is presented
®rst.
When a vortex is shed, the space it occupied behind the body is replenished by liquid

moving more slowly than the rotational velocity of the vortex. A signi®cant velocity reduction
occurs due to the sharp turn that the incoming ¯uid has to make to occupy the volume
immediately after the body. The Bernoulli equation predicts that this decrease in the velocity of
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the ¯uid will generate an increase in pressure. Therefore, when a vortex is shed, a transient
lateral force on the body will arise. After averaging over an appropriately long period of time,
this e�ect will generate a non-zero lateral force if the wake is not symmetric with respect to a
plane perpendicular to the direction of the lateral force, parallel to the main direction of the
¯ow and passing through the center of the body (i.e., the centerline plane). This is necessarily
the case for a shear ¯ow. The numerical simulations of Jordan and Fromm (1972) and
AlajbegovicÂ et al. (1998) show very clearly how this mechanism may produce a non-zero
average lateral force.
The lateral force will depend signi®cantly on the wake structure, but two cases need to be

considered. In the ®rst case, which can be found in cylinders of circular and non-circular cross-
section (AlajbegovicÂ et al., 1998; Jordan and Fromm, 1972), the high and low velocity sides
periodically shed vortices which di�er in size and characteristic velocity. As a consequence the
lateral force changes sign over time. A non-zero average lateral force arises because the lateral
force produced by shedding on the high velocity side is di�erent in magnitude from that
originated by shedding on the low velocity side. The net force is toward the low velocity side.
In the second case, which has been found in a ®xed sphere in uniform shear ¯ow (Sakamoto
and Haniu, 1995), vortices form and detach at the high velocity side only. Vortices at the high
velocity side grow faster and bigger than those at the low velocity side and eventually they
engulf the latter before they form a separate vortex and detach. Therefore, vortices covering
the whole cross stream span of the wake are observed. They are strongly non-symmetric with
respect to the centerline plane. Thus, even in the absence of shedding from the low velocity
side there is a lateral force, although in this case periodic changes of sign are not expected. The
shape of the hairpin vortices visualized by Sakamoto and Haniu (1995) suggests that the force
is toward the low velocity side for a ®xed sphere, as well as in the case of the cylinder. Taking
into account the direction of the relative velocity and the vorticity, we ®nd that this direction is
opposite to that predicted by inviscid lift for a sphere.
Thus, it is to be expected that the total lateral force on a sphere results from a balance of

inviscid e�ects as accounted for in traditional inviscid theory (Drew and Lahey, 1987, 1990;
Auton, 1987; Auton et al., 1988) and wake e�ects. Signi®cantly, no vortex shedding is expected
for Reynolds numbers below 300 (Sakamoto and Haniu, 1995) and consequently inviscid
e�ects should be dominant. As the Reynolds number increases wake e�ects become more
important until they reverse the sign of the lateral force.
It is not clear which of the two cases noted above the wake of a free moving sphere in a

shear ¯ow resembles more, but it seems likely that it is in some intermediate stage between the
two. That is, the movement of the sphere will increase the likelihood that a separation bubble
generated on the low velocity side is not absorbed into the vortex loop formed at the high
velocity side before it can grow into a separate vortex loop.
An estimate of the kinetic energy in the wake follows. The rate at which the mass of wake

¯uid grows is rA�vr � oD=2�=2 on the high velocity side, and rA�vr ÿ oD=2�=2 on the low
velocity side (see Fig. 1); where A is the body frontal area, r is the density of the liquid, D is
the diameter of the immersed body (this argument is applicable to spheres and cylinders) and,
in this context, and o is the velocity gradient in a direction perpendicular to the main ¯ow.
Velocities in the vortex motion are proportional to the free stream velocity, giving a rate of
increase of kinetic energy in the wake of:
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C1�rA�vr � oD=2�3 and C1ÿrA�vr ÿ oD=2�3

for the high and low velocity sides, respectively, where C12 are the constants of
proportionality linking the velocities in the mainstream, vr2oD=2, and in the wake. Of course,
this argument requires that averaging over time is carried out. Otherwise, relating velocities in
the vortex region with that of the free stream through constants of proportionality does not
make sense. Moreover, these constants could di�er on each side due to asymmetries in the
wake-induced by the shear.
Let us assume that the velocities of displacement in the lateral direction produced by the

vortex shedding instabilities are also proportional to (vr2oD=2), hence, the lateral forces are
proportional to

CLw�rA�vr � oD=2�2=2 and CLwÿrA�vr ÿ oD=2�2=2
where CLw2 is the product of C12 and another constant of proportionality, relating the
mainstream velocities with the lateral velocities.
Clearly, there is no need for CLw� and CLwÿ to be equal. In particular, evidence that they

are not equal for the ®xed sphere case was discussed above. However, it is to be expected that

Fig. 1. Schematic of a sphere submerged in a uniform shear ¯ow.
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these di�erences will not be as strong for a moving sphere as for a ®xed one. Because of this
let us assume that the coe�cients are the same at both sides, hence: CLw � CLw� � CLwÿ.
For the ®rst case, alternate vortex shedding on the high and low velocity sides, the vortices

shed on each side should produce forces of opposite directions. For the second case (the ®xed
sphere) as a hairpin vortex is shed, a net force arise from the simultaneous competitive e�ects
on each side. Therefore, in both cases the average lateral force induced by vortex shedding will
be (where h i denotes time averaging):



FL�wake�

� � CLw

2
rA
�
�vr � oD=2�2ÿ�vr � oD=2�2

�
� CLwrADvro �3�

which is the same functional dependance as inviscid lift, Eq. (2), because AD is directly
proportional to the volume of the body. An immediate corollary can be derived from this
®nding: to accommodate wake e�ects it is possible to have a new coe�cient in the inviscid lift
relationship and to use it to ®t the experimental data. This is the approach which has been
taken implicitly in two-¯uid modeling. The fact that most published data on bubbly (Wang et
al., 1986; Lahey et al., 1993) and solid/liquid (AlajbegovicÂ et al., 1994) two-phase ¯ow imply
that the lift coe�cient ranges between 0.01 and 0.1, a range of values considerably smaller than
the 0.5 predicted by inviscid theory, implies that wake e�ects induce forces in the opposite
direction and with the same functional dependance. Moreover, it suggest why negative values
of CL are necessary to ®t experimental data for bubbly two-phase ¯ow in a sudden expansion
(Bel Fdhila, 1991) and for some developing ¯ows in a vertical pipe (Grossetete, 1995).
The absence of the sphere's density, rd, in Eq. (3) is signi®cant. In most multiphase ¯ow

applications the dispersed body will move under the in¯uence of the lateral forces induced by
the wake. This movement will displace the body which in turn will modify the wake structure.
This modi®cation can cause such phenomena as lock-in (i.e., the synchronized movement of
bubbles and their wakes (Sa�man, 1956)). As soon as the sphere is allowed to move its density
plays a role. However, the problem is so complex that even for two dimensions most
researchers choose to simplify it by considering only the case of forced oscillations (Stansby,
1976). AlajbegovicÂ et al. (1994) explained his ®nding that the lift coe�cient for light particles is
smaller than that of heavy ones because the shear ¯ow rotates the former more easily than the
latter. This rotation induces a Magnus force and a very non-axisymmetric wake. Negative lift
coe�cients have been observed by several researchers for rotating spheres (Maccoll, 1928;
Davies, 1949; Taneda, 1957). For this case the wake-induced lateral force could have a more
complex form than in Eq. (3) because of the constants of proportionality not being equal;
however, the reasoning leading to Eq. (3) is still valid. Moreover, in this particular case the
constants CLw� and CLwÿ should be strongly in¯uenced by the shear magnitude and the
sphere's density.
Another factor that can dramatically in¯uence the wake structure and consequently the

lateral forces that it originates is the incoming ¯uid turbulence. Kim and Durbin (1988) found
that acoustic excitation can dramatically a�ect the vortex shedding frequency and the drag
coe�cient. Torobin and Gauvin (1960) also found that turbulence of the surrounding liquid is
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a major factor in determining the value of the critical Reynolds number at which boundary
layer separation occurs. The ratio of the characteristic size, l, of the energy carrying eddies of
the liquid ¯ow and the sphere's diameter, D, determines the relative importance of the lateral
forces induced by the mean shear of the ¯ow on one hand, and the turbulence dispersion on
the other. It is to be expected that as this ratio increases the value of the coe�cient CLw

diminishes.
It is convenient to explore how the inviscid lift and wake-induced lateral forces add up.

Choosing a coordinate system with the origin at the center of the sphere, the case of uniform
shear ¯ow is described without loss of generality by assuming vr � �0,0,wr � ox�. Therefore,
Eq. (2) becomes,

FL�inviscid� � rCLVowr �4�
where FL�inviscid � is in the x direction. To write Eq. (3) for the selected frame of reference wr has
to be replaced by vr. Hence, from the sum of Eqs. (4) and (3) the total time-averaged lateral
force, hFLi, on a sphere is,

hFLi �


FL�inviscid�

�� 
FL�wake�
�

� rV� ÿ CL � CLw�owr � CLTrVowr �5�
where the constant geometric factor AD=V has been absorbed in CLw and the elementary
properties of the time-averaging operator were applied. The non-dimensional form of Eq. (5)
is,

hFLi
prn2=6

� CLTRe Rer �6�

where,

Re � wrD=n and Rer � oD2=n �7�
are the relative velocity and velocity gradient Reynolds numbers, respectively, and n is the
kinematic viscosity of the continuous phase. In Eq. (6), CLT is the total lift coe�cient given by
the sum of inviscid and wake e�ects, which, for a sphere becomes,

CLT � CLw ÿ 1

2
�8�

It is assumed that the directions of the inviscid and wake e�ects are opposed and to facilitate
the exposition of experimental results the wake induced force direction is adopted as being
positive. The use of the constant value 1/2 for the inviscid lift is based on the analysis of Drew
and Lahey (1987, 1990), Auton (1987) and Auton et al. (1988). As in the case of the drag
argument presented by Lighthill (1986b), the constants of proportionality used in this
exposition have to depend on the ¯ow structure and consequently on the Reynolds numbers
and length scales of the ¯ow. Thus, based on all the considerations discussed above it is to be
expected that,
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CLw � CLw

�
Re,Rer,

r
rs

,
l

D

�
Therefore, CLT in Eq. (8) should be a function of Re and Rer. Similarly, the drag coe�cient is
a function of the Reynolds number, Re (Lighthill, 1986b).

2.2. The pendant equation

The equation describing the motion of a rigid discrete pendant sumberged in a ¯uid for an
inertia dominated ¯ow with instantaneous drag, D, and lift forces, LI, (Auton et al., 1988;
Loth et al., 1997; Naciri, 1992) is:ÿ

rd � CVMr
�
Vd

dvd

dt
� ÿVd�rd ÿ r�g� D� LI � Vdr�1� CVM�Dv

Dt
� LW �9�

where v and vd are the liquid and pendant velocity, respectively, rd and r are the sphere and
¯uid density, respectively, and g is the acceleration of gravity. The parameters Vd and CVM are
the volume and virtual volume coe�cient of the body, which for the particular case of a sphere
become pD3=6 and 1=2, respectively. The fourth term on the right-hand side involves the ¯uid's
material derivative, D=Dt � @=@t� v � r, and arises because, as the ¯uid ®eld changes in space
and time, it induces forces on the body. The last term, LW, represents the lateral forces due to
the interaction of the body and its wake. This force is usually not modeled and is taken into
account by changing the value of a coe�cient in the inviscid lift force, LI. In most applications
for turbulent ¯ows, Eq. (9) can only be evaluated in terms of average quantitites because
neither enough detailed knowledge of the velocity ®eld, nor computing power, is available.
Because of the accurate determination of the average velocity ®eld, this work represent a
unique opportunity for assessing the hypothesis necessary to write Eq. (9) in terms of the
average liquid velocities. Hence, a brief exposition of these hypothesis for the particular
velocity ®eld relevant for this investigation follows.
In term of average quantities the ¯ow is steady,

@

@t
� 0, �10�

and has the following spatial dependance in the neighborhood of the particle,8<:w � w0 � ox �axial velocity�
u<<w0 �lateral velocity�
v � 0 �spanwise velocity�

�11�

Although the mainstream velocity at the tethered pendant's rest position, w0, does depend on
the z coordinate, for the case of a pendant the z dependance can be safely neglected. Because
the liquid velocity in the x direction, u, is much smaller than w0, and since the x range of the
pendant is very small, spatial derivatives of u can also be neglected. The accuracy of Eqs. (10)
and (11) depends strongly on the time and length scales of the turbulence being small
compared with their pendant counterparts. The small size of the non- uniform grid wires used
to establish the shear ¯ow, compared with the spheres used, suggests that turbulence length
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scales are small enough for Eqs. (10) and (11) to hold. Similarly, the ¯atness of the root mean
square velocity pro®les (see Section 4) suggest that is safe to assume there are no turbulent-
phoretic forces. Eqs. (10) and (11) can be replaced in Dv=Dt to show that in the direction
perpendicular to the tether attached to the pendant, D=Dt � 0. Thus, in this direction,

ÿ
rd � CVMr

�
VsL

d2y
dt2
� ÿVs�rd ÿ r�gsin y� �D� LI � LW�y �12�

where y is the angle formed by the thread with the vertical and it is positive moving toward the
low velocity side, that is, in the x positive direction. Hence, L is the distance between the
pendant hanging point and its center of mass and the subscript y indicates the direction
perpendicular to the tether. In this direction, the drag force can be written as,

Dy � ÿCD

8
rpD2

����������������������������������������������������������������������������
uÿ L

dy
dt

cos y

�2

�
�
w� L

dy
dt

sin y

�2
s

�
�
L

dy
dt
ÿ ucos y� wsin y

�
�13�

To obtain this expression the absolute value of the relative velocity of the sphere with respect
to the ¯uid is used to calculate drag, which is then projected in the direction perpendicular to
the tether. It will be seen in the Section 4 that w� Ldy=dt,u. Thus, Eq. (13) can be simpli®ed
to:

Dy � CD

8
rpD2jwj

�
L

dy
dt
ÿ ucos y� wsin y

�
�14�

The combined e�ects of inviscid lift and the wake-induced lateral forces are written as,

�LI � LW�y� CLT�t�rVdwocos y �15�

Note that to include wake induced instabilities the parameter CLT�t� should be a function of
time.
Replacing Eqs. (14) and (15) in (12) and rearranging yields,

d2y
dt2
� 1

tD

dy
dt
� ÿ 1

t2v
sin y� 1

t2h�t�
cos y �16�

where

1

tD

� 3CDrjwj
4
ÿ
rd � CVMr

�
D

�17�

1

t2v
� �rd ÿ r�gÿ

rs � CVMr
�
L
� 3CDrw2

4D
ÿ
rd � CVMr

�
L

�18�

and
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1

t2h�t�
� 3CDrjwju

4D
ÿ
rd � CVMr

�
L
ÿ CLT�t�rwoÿ

rd � CVMr
�
L

�19�

Eq. (16) is the well-known equation of a damped pendant with an extra forcing term,
cos y=t2h�t�, due to the lateral or horizontal forces (the subscripts `h' and `v' stand for
horizontal and vertical, respectively). Solving Eq. (16) requires knowledge of the unknown time
dependance of t2h�t�. However, for the purpose of this discussion the time-average form of Eq.
(16) at a ®xed y is more relevant. After rearranging we have:

htan yi �
�

1

t2h�t�
�
t2v ÿ

*
d2y
dt2
� 1

tD

dy
dt

+
t2v

cos y
�20�

We note that tan y has not been completely speci®ed, since in Eq. (20) cos y appears in the
right-hand side. However, the smallness of the values of y involved (see Section 6) allows one
to assume that cos y11. It must be stressed that because of vortex shedding instabilities, the
drag coe�cient should be considered a function of time also. However, Jordan and Fromm
(1972) predict for a cylinder in a shear ¯ow a variation with time smaller than 10% and larger
than 100% for the drag and lift coe�cients, respectively. Based on this evidence, the drag
variation with time was expected to be much less than that of lift. Thus, the drag coe�cient
was considered to be constant. Thus, both t2h and tD are considered constants with respect to
time. Without the second term on the right-hand side, Eq. (20) describes a static balance of
forces including buoyancy, drag and the time-averaged lateral forces. The second term
describes the time-averaged force produced by accelerations and damping. For symmetric
oscillations around a equilibrium angle, yeq, which is not necessarily zero:*

d2y
dt2
� 1

tD

dy
dt

+
y�yeq

� 0 �21�

If the oscillations are symmetric for each positive angular acceleration, there will be a negative
one with the same value. Thus, if time integration occurs during a long enough interval, the
average acceleration will be zero. A similar argument applies to angular velocity. However, not
all oscillation modes are symmetric as will be seen in a later example in this section. Because
the experimental method is based on the indirect determination of lateral forces though the
measurement of an angle, yeq, and a static balance of forces, it is important to study the
consequences of Eq. (21) not being valid. The static force balance at yeq renders,

tan yeq �
�

1

t2h�t�
�
t2v ÿ

*
d2y
dt2
� 1

tD

dy
dt

+
y�yeq

t2v
cos yeq

�
�

1

t2h�t�
�

m

t2v �22�

where h1=t2h�t�im is the measured time-averaged contribution of the lateral forces and t2v is
known since all magnitudes in Eq. (18) are known. Thus, the measured and the actual time-
averaged lateral forces di�er by a term proportional to hd2y

dt2
� 1

tD

dy
dt iy�yeq

. After multiplication
by the length, L, this average can be interpreted as the contribution of lateral accelerations and
viscous forces. Since a similar term would exist for a free particle in a shear ¯ow, judging the

F.J. Moraga et al. / International Journal of Multiphase Flow 25 (1999) 1321±13721334



hd2y
dt2
� 1

tD

dy
dt iy�yeq

term to be an experimental error is premature. For fully developed bubbly
¯ow in a pipe it is usually assumed that there is no radial velocity, the assumption being
justi®ed because the ¯ow is fully developed. Hence, in applying the experimental results of this
work to this particular case the issue to address is how much the hd2y

dt2
� 1

tD

dy
dt iy�yeq

term di�ers
from its free particle counterpart. This question could be rephrased as, how much the
constraint imposed by the ®xed distance between the hanging point and the sphere a�ects the
wake dynamics. This question will be addressed later in light of the experimental evidence in
Section 7. If the lateral velocity ®eld is to be resolved, then the hd2y

dt2
� 1

tD

dy
dt iy�yeq

term should be
considered as an experimental error and the issue to address is how much error it introduces;
that is, how large it is compared to h1=t2h�t�i. Again, this issue will be analyzed in Section 7.
To further explore the error introduced by hd2y

dt2
� 1

tD

dy
dt iy�yeq

and to obtain some magnitudes
relevant to the experimental analysis of data, the particular cases of a constant lift coe�cient
will be explored. Thus, it is assumed that,

CLT�t� � CLT0 �23�
Although Eq. (16) can readily be solved numerically, for the purpose of this exposition the
analytical solution obtained after introduction of the small angle approximations, sin y ' y and
cos y ' 1, are su�cient. The approximations introduce errors in y smaller than 5� 10ÿ5 and
2� 10ÿ3, respectively, both of which are negligible compared with the experimental error, as it
will be seen in Section 6.2. With these approximations Eq. (16) can be written as,

d2y
dt2
� 1

tD

dy
dt
� 1

t2v
y � 1

t2h
�24�

The above is the well-known equation of a damped harmonic oscillator with constant forcing
1=t2h. Its solution for the initial conditions,

y�t � 0� � y0

dy
dt
�t � 0� � _y0

is

y � exp

�
ÿ t

tD

��
t
�

_y0 � y0 ÿ yeq

tD

�
sin

t

t
� ÿy0 ÿ yeq

�
cos

t

t

�
� yeq �25�

where it was assumed that the discriminant,

ÿ 1

t2
� 1

t2D
ÿ 4

1

t2v
�26�

is smaller than zero. The constant particular solution, yp, to the non-homogeneous Eq. (24) is,

yeq � t2v
t2h

�27�
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The parameter 1=t is the natural frequency of the system. It is important to note that t does
not depend on the lateral forces. Thus, the main e�ect of lateral forces is to move the position
around which oscillations occur from y � 0 to yeq.
Even though the oscillations are centered around yeq, the time-average of the ®rst and

second time derivatives of Eq. (25) evaluated at yeq will not be identically zero because of the
exponential modulation of the amplitude. In other words, the sign of y0 gives preference to one
side over the other.
Eq. (25) shows that the average value of y depends on the lift coe�cient through t2h, and

that hd2y
dt2
� 1

tD

dy
dt iy�yeq

is not necessarily zero. However, since the lift coe�cient in the presence
of strong body-wake interactions is a complex, and not necessarily periodic, function of time,
the motion of the pendant may be more complex than the described by Eq. (25). In general, it
is possible to write,

y � yeq � f�t� �28�
where f(t ), is a function of time such that,�T

0

f�t� dt40 as T41 �29�

The experimental error introduced by hd2y
dt2
� 1

tD

dy
dt iy�yeq

will be negligibly small, if,

1

T

�T
0

d

dt
f dt40 as T41 �30�

1

T

�T
0

d2

dt2
f dt40 as T41 �31�

Evidence that this condition is satis®ed for the non-periodic data will be presented in Section
6.1.

3. The production of a turbulent uniform shear ¯ow using non-uniform grids

Yamamoto et al. (1993, 1995) measured the lift force on a solid sphere at high Reynolds
numbers. They used a method designed by Owen and Zienkiewicz (1957) to produce a linear
velocity gradient in a wind tunnel. The gradient was produced by a grid of parallel rods which
were not equally spaced. Owen and Zienkiewicz derived the spacing of the rods in the grid
needed to make the velocity gradient linear using a combination of small perturbations
methods, inviscid theory before and after the grid, and experimental correlations at the grid
itself. They tested their method with surprising success even for cases where the small
perturbation hypothesis did not hold. This success re¯ects the fact that the experimental
correlations used are not limited by the small perturbation hypothesis. This grid method has
been used in single-phase turbulence studies by McCarthy (1964), Rose (1966, 1970), Borean et
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al. (1995). Elder (1958) and McCarthy (1964) have also extended the method to non-linear
velocity gradients.
All researchers used open air loop setups where the pumping power needed to reach very

high Reynolds numbers (the Reynolds number based on the test section width ranges from 2�
105 in Yamamoto et al. experiments to 8� 105 in Owen et al.'s work) is not a concern. The
value of the shear was adjusted by controlling the ¯owrate. Thus, for a given x position there
exists a relation between the axial velocity, w, and the shear, dw � dx.

4. Continuous phase velocity ®eld measurements

Schematics of the ¯ow loop and test section can be seen in Figs. 2 and 3. Note that the
water was directed downwards, and an elevated water storage tank was connected to the pump
inlet to provide a constant pressure reference. A centrifugal pump was employed and the ¯ow
rate was adjusted using a set of calibrated throttle valves. The solidity distribution of the grid
used to produce the shear can be seen in Fig. 4. A more detailed description of the
experimental facility and the velocity measurement method can be found elsewhere (Moraga,
1998; Moraga et al., 1999). In order to cover a large range of Reynolds numbers, two di�erent
temperatures were used, 26228C and 55228C. The kinematic viscosity of water decreases as

Fig. 2. Schematic of the loop.
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the temperature increases, thus, the Reynolds numbers increase with temperature. Fig. 5 shows
a schematic of the reference system with respect to the grid. This ®gure will be useful for later
reference.

4.1. Axial velocity, w

Let us now consider the measurements of the axial velocity, w.

4.1.1. Measurements at 558C
Two sets of measurements for two di�erent ¯ow rates were acquired. Each ¯ow rate is

characterized by its centerline velocity at z=h � 1,

Fig. 3. Detail of the test section.
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w�x=h � 0:5,y=h � 0:5,z=h � 1� � 0:56; 0:67 m=s

which from here on will be referred as the centerline velocity and h � 76:2 mm is the duct
width. The 0.56 m/s set is the more extensive one since the 0.67 m/s one consisted of a
repeatability check.
The results can be seen in Figs. 6±10, which show the mean and root mean square (rms)

streamwise velocities, w, wrms, respectively, as a function of position.
Table 1 shows the main results corresponding to z=h � 1 and y=h � 0:5. In the table dw=dx

Fig. 4. Solidity distribution along the grid. Solidity, x, is the ratio of the wires diameter, d, and the distance between
wire centers, s; that is, x � d=s.

Table 1
Main parameters for measurements at z=h � 1 and y=h � 0:5 at 558C (wrms is the average of all data points)

wjx=h�0:5 (m/s) wrms (m/s) dw=dx (1/s) s 10ÿ2 m/s s=wjx=h�0:5 (%) r2 Figures

0.56 0.051 7.81 3.0 5 0.959 Figs. 6 and 7

0.67 0.056 9.54 1.4 2 0.994 Figs. 8 and 9
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is the ®tted slope; wrms is the average of all data points at z=h � 1 and y=h � 0:5 and
corresponds to approximately 8% turbulent intensity. The standard deviation of the linear ®t,
s, and the square of the correlation coe�cient, r 2, are used as a measure of the linearity of the

pro®le. Since s is just 2 to 5% of the corresponding centerline velocity, wjx=h�0:5, and it is
smaller than wrms, the results show a very acceptable degree of linearity.

Fig. 6 shows that the core of the ¯ow is bidimensional at z=h � 1; that is, the velocity pro®le
are practically the same at the central values of y=h (=0.375, 0.5, 0.625) and rise slightly closer
to the walls (y=h � 0:25,0:75) without loosing linearity in the x direction. Fig. 7 shows the wrms

velocities corresponding to the 0.56 m/s centerline velocity at z=h � 1.

In order to determine the repeatability of the measurements, data were acquired on two
di�erent days for the same ¯ow rate conditions (i.e., for a centerline velocity of 0.67 m/s).

These results can be seen in Figs. 8 and 9. From the linear ®ts in Fig. 8 it can be seen that the
lines for both dates are practically parallel and the main di�erence between the two sets is a
small displacement of the curves, probably produced by a small change in the total ¯ow rate.
It is observed that this change is too small to be detected by the Pitot tube used to verify that
the ¯ow rate was constant along the measurements. The repeatability of the rms velocities is

Fig. 5. Detail of the coordinate system.
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also excellent considering that they are a second-order momentum term and consequently they
are more susceptible to statistical ¯uctuations.
As seen in Figs. 7 and 9, turbulence intensities are about 8% of the centerline velocity. This

value is comparable to the 5% found by other researchers in air loops (Yamamoto et al.,
1993). The increase in intensity can be attributed to the higher grid solidity required for the
more compact grid used in this water loop. It can also be observed from Figs. 7 and 9 that the
turbulence intensities are practically ¯at. This result is an indication that at the distance of the
grid, z=h � 1, where the measurements were made, the turbulence magnitudes are determined
mainly by the mean shear and that the di�erences in scales introduced by the grid has been
erased by the mean shear. This ¯atness of turbulence intensities was also found by other
researchers (Borean et al., 1995; Rose, 1966; McCarthy, 1964).
For each point in the w and u measurements N � 10,000 data points were acquired. Thus,

the statistical error for the mean velocities are Dw � wrms=N
1=2 � wrms=100 and

Du � urms=N
1=2 � urms=100, which in both cases are smaller than the size of the symbols in the

plots.
Fig. 10 shows a gradual reduction of the linear slope as the z coordinate increases. It is

Fig. 6. Streamwise velocity pro®le at z=h � 1 for a centerline velocity of 0.56 m/s and at 558C.
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obvious from the ®gure that at z=h � 2:16 there has to exist a lateral movement of liquid form
the high to the low velocity region. The ®gure corresponds to the highest ¯ow rate used in this
data set. Since with a reduction of ¯ow rate the shear destruction region moves closer to the
grid, it is clear that the z � z0 plane where the lateral velocities are minimal is located for every
¯ow rate at z=h<2:16.
The total area under each curve increases with z. This trend can be explained by the growth

of the wall boundary layers that slows down the ¯uid entering them. Therefore, liquid in the
core has to accelerate since the total ¯ow rate was held constant.

4.1.2. Measurements at 268C
Fig. 11 shows the velocity pro®les at z=h � 1 and y=h � 0:5 at 268C for di�erent ¯ow rates.

As before, the mainstream velocity at the test section centerline was used to characterize ¯ow
rates. Unfortunately, the reduction of the Reynolds numbers of the channel and wires
diminishes the grid performance, as is clear from the decrease in linearity visible in Fig. 11.
However, a parabolic ®t was su�cient to correct for non-linearities. Moreover, it will be seen

Fig. 7. Streamwise rms velocity at z=h � 1 for a centerline velocity of 0.56 m/s and at 558C.

F.J. Moraga et al. / International Journal of Multiphase Flow 25 (1999) 1321±13721342



in Section 6.2 that the range of movement in the x direction of the pendant is so small that we
may safely neglect local departures from linearity. The parabolic ®ts were used to calculate the
local vorticity, dw=dx, at x=h � 0:34 and 0.62 (or x � 25:75 and 47.0 mm, respectively). As will
be seen in Section 6.2, the positions x � 25:75, 47.0 mm are of special relevance because they
were selected as the hanging positions of the pendant. That is, when the pump was o� and
buoyancy was the only force acting on the sphere, the sphere center was located at these
positions. Table 2 details the main parameters of these measurements, including the average
mainstream velocity and vorticity at the above-mentioned positions. The local vorticity errors
were calculated by propagation from the error of the coe�cients of the ®ts. The average
velocity errors were calculated using the already described procedure for the 558C data. The
standard deviation, s, of the ®ts shown in Table 2 are smaller than the rms velocities. As was
mentioned previously for the 558C data, this fact is taken as an indication that from the point
of view of the measurement of lateral forces on the pendant, the w velocity pro®les were
satisfactory. The high values of the square of the correlation coe�cient, r 2, con®rm this point
of view.

Fig. 8. Repeateability check of the streamwise velocity pro®le at z=h � 1.
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Fig. 9. Repeatability check of wrms at z=h � 1.

Table 2
Streamwise velocity measurements at z=h � 1 and y=h � 0:5 at 268C (h � 76:2 mm)

wjx=h�0:5
(1210ÿ3) m/s

wjx=h�0:34
(1210ÿ3) m/s

wjx=h�0:62
(1210ÿ3) m/s

wrmsjx=h�0:5
(10ÿ3 m/s)

dw
dx jx=h�0:34
(1/s)

dw
dx jx=h�0:62
(1/s)

s
(10ÿ3 m/s)

r2

0.085 0.095 0.079 5.7 0.920.2 0.620.3 2.4 0.978
0.119 0.132 0.113 5.4 1.320.1 0.520.1 1.3 0.995
0.175 0.189 0.167 9.5 1.320.1 0.720.2 1.8 0.993

0.228 0.247 0.219 8.4 1.920.2 0.720.3 2.9 0.990
0.270 0.294 0.259 12.4 2.320.2 0.920.2 2.0 0.997
0.326 0.356 0.310 11.5 2.820.3 1.520.4 3.7 0.993
0.450 0.527 0.403 31.8 722 522 19 0.976

0.477 0.558 0.427 33.8 722 522 22 0.972
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For posterior reference a plot of the local relationship between the Reynolds numbers based
on the local relative velocity (Re ) and vorticity (Rer) is shown in Fig. 12 for a sphere of
diameter D � 12:7 mm (1/2 in.). It is convenient to express the relationship between velocity
and vorticity at a given position in term of Reynolds numbers to take into account the e�ect of
the kinematic viscosity and its variation with temperature. The Reynolds numbers, Re and
Rer, were varied independently changing the x rest position of the pendant, x rest.
The ¯atness of the rms velocity pro®le seen in Fig. 13 indicates that in spite of the reduction

of the channel Reynolds number, turbulent energy production by the shear remains the
dominant factor determining the turbulent structure.

4.2. Lateral velocities, u

4.2.1. Finding the location of the minimum lateral velocities
Immediately after the grid, there exist a lateral velocity, u<0, that moves liquid toward the

high velocity side. This movement is due to inertia and the creation of the velocity gradient by

Fig. 10. Typical streamwise velocity pro®le variation along the test section at the centerplane y=h � 0:5.
wjx=h�0:5 � 0:67 m/s.
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the grid. Far away from the grid, the destruction of the shear is associated with a ¯ow toward
the low velocity side (u > 0). In the transition region lateral velocities should be very small.
This transition region is the place were the spheres should be placed to minimize lateral drag
and make inviscid lift the dominant lateral force. For the purpose of this investigation, it is
necessary to know accurately the lateral velocities only in this transition region, where the
lateral forces will be measured. Thus, rather than make a complete mapping of the lateral force
®eld at each position behind the grid, a mechanical method that helped determine where the
minimum occurred was implemented. It is based on the realization that a ¯at plate hanging
vertically in a x = constant plane will not experience any lateral force due to the average
vorticity ®eld, but it will be displaced by lateral drag forces. Therefore, the location where the
plate was displaced the least from the vertical was the one having the minimal lateral forces.
This method had the additional advantage of integrating the lateral velocity over the area of
the plate which is considerably larger than the LDA measurement volume and of about the
same size as most of the spheres used for the measurements.
Using a square stainless steel plate of 12 mm sides and 0.25 mm thick, it was determined

Fig. 11. Streamwise velocity pro®le at z=h � 1 and y=h � 0:5 at 268C.
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that the region where lateral forces were minimal corresponded to z=hR1 (Moraga, 1998). This
region was found to be rather insensitive to ¯ow rate. The region where lateral forces are
minimal should have a length of order h (Moraga, 1998). Given this length and the relative
insensitivity of the method used to determine the position of this area, the independence of
¯ow rate is to be expected. In order to take full advantage of the glass window placed at z=h �
1 to make LDA measurements, all lateral velocity measurements were made at this position. It
will be seen from the results that at this horizontal plane the lateral velocities were low and
varied little with system ¯ow rate.

4.2.2. Measurements at 558C
A small angle correction has to be introduced due to the large di�erence in magnitude of the

u and w velocities. The corrected lateral velocity, uc, is

Fig. 12. Relationship between Reynolds numbers based on relative velocity (Re ) and velocity gradient (Rer) for
D � 12:7 mm at x=h � 0:32, 0.64, y=h � 0:5 and z=h � 1.
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uc � u� wsin

�
0:5p
180

�
�32�

For example, a centerline velocity of w � 0:56 m/s implies a correction Du � ÿ5� 10ÿ3 m/s.
Lateral mean and rms velocities corresponding to the 0.56 m/s centerline velocity (Fig. 6) can
be seen in Fig. 14. Both, the average and rms velocity pro®les are rather ¯at with rms velocities
being at least two times larger than the average velocities. As expected, the rms tends to
increase with ¯ow rate. They are also comparable in magnitude with wrms, indicating a near
isotropic turbulence structure. Moreover, since both, urms and wrms are uniform in the x
direction, no variations of the turbulence kinetic energy are expected in this direction. The
statistical error of the lateral velocity measurements, u, was already noted above. It was found
to be approximately 5� 10ÿ3 m/s, which is smaller than the symbol sizes in Fig. 14. The
smallness of this error maked it necessary to consider the existence of other errors which are
more di�cult to quantify; electronic noise, for example.

Fig. 13. Streamwise rms velocity pro®le at z=h � 1 and y=h � 0:5 at 268C. For symbols detail see Fig. 11.
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4.2.3. Measurements at 268C
Fig. 15 shows the lateral average and root mean square velocity pro®les at z=h � 1 and

y=h � 0:5 for di�erent centerline velocities. The comments already made for the 558C lateral
velocity measurements about the ¯atness of the rms pro®les and the turbulent kinetic energy
are applicable here too. Fig. 16 shows the variation with ¯ow rates of the lateral velocities at
x=h � 0:34 and 0.62. The lines in this last ®gure show the angle correction given by the second
term in Eq. (32). Obviously, the magnitude of this correction tends to increase with the local
value of w. Table 3 shows the already mentioned magnitudes and the root mean square
velocities, which are several times larger than the absolute value of the average velocities.

5. Pendant experiments

This section describes the pendant and optical setups and the data acquisition and processing

Fig. 14. Lateral average (open symbols) and rms (closed symbols) lateral velocity pro®le in the y direction at
z=h � 1.
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Fig. 15. Lateral average (open symbols) and rms (closed symbols) velocity pro®les at z=h � 1 and y=h � 0:5 at 268C
for di�erent centerline velocities.

Table 3

Lateral velocity measurements at z=h � 1 and y=h � 0:5 at 268C (h � 76:2 mm)

wjx=h�0:5 (1210ÿ3) m/s ujx=h�0:34 (10ÿ3 m/s) ujx=h�0:62 (10ÿ3 m/s) urmsjx=h�0:34 (10ÿ3 m/s) urmsjx=h�0:62 (10ÿ3 m/s)

0.085 ÿ4.420.1 ÿ15.820.3 6 7
0.119 ÿ4.620.1 ÿ14.020.3 7 8

0.175 ÿ4.420.1 ÿ14.020.3 9 11
0.228 ÿ4.920.1 ÿ6.920.3 12 12
0.270 ÿ4.120.1 ÿ7.020.3 14 12

0.326 ÿ5.420.1 ÿ2.220.1 14 14
0.360 ÿ5.120.2 ÿ3.120.3 16 30
0.401 ÿ5.620.2 ÿ7.620.3 24 31
0.450 ÿ3.820.3 2.820.3 27 27

0.477 ÿ6.620.3 2.420.3 30 27
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system. The experimental procedure and details of the consistency checks performed can be
found elsewhere (Moraga, 1998).

5.1. Pendant setup

A schematic of the pendant and supporting structure can be seen in Fig. 17. The hanging
point of the pendant was the tip of a stainless steel capillary tube of 1.27 and 0.84 mm OD
and ID, respectively. This tube was shaped to minimize interference with the sphere movement
in the x direction, the direction relevant for lateral forces. It was attached to a 6 mm diameter
aluminum rod (not shown in Fig. 17) that could be moved to control the x position of the
hanging point. On several occasions during the measurements it was veri®ed that the capillary
tube did not deform under the in¯uence of drag and weight.
The pendant thread was a 0.15 mm diameter Spiderware2 micro®lament line. This thread

was selected for its small diameter, opaqueness and relatively well-de®ned contour, all
important factors in determining the shape and duration of the pulses produced. In addition,

Fig. 16. Lateral, u, vs. centerline, wjx=h�0:5, velocity at x=h � 0:34, 0.62, z=h � 1 and y=h � 0:5 at 268C.
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the thread has to always form a straight line between the hanging point and the spherical
pendant. Otherwise a systematic error is introduced as the position of the sphere is inferred
from that of the thread assuming that the latter is straight along all its length. It was found
that this requirement is one of the key factors that sets a lower limit on the sphere Reynolds
number at which experiments could be carried out, as particle drag and weight can become too
small to keep the thread straight. For example, 6.35 mm diameter stainless steel spheres where
too light and small to keep the thread straight at the lowest ¯owrate used. The thread selected
required a smaller tension to adopt a straight pro®le than any other textile or plastic line
tested. Another possible systematic error would arise if the sphere rotated around the point
where it joins the thread. Fortunately, even at the largest amplitude of oscillations no rotation
of this kind was observed.
After entering the capillary tube at the hanging point, the thread traveled through the tube a

Fig. 17. Pendant schematic.
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distance large enough to ensure that it would not perturb the ¯uid motion in the neighborhood
of the pendant. After leaving the capillary tube, the thread passed through a rubber seal.
Table 4 shows the properties of the spheres after the thread was attached to them. A groove

2 mm wide and about 2 mm deep was cut in each of the 316 stainless steel (SS) spheres. The
thread and a small steel pin to which it was tied was inserted in the groove. The groove was
®lled with epoxy taking care to keep a spherical shape. Unavoidably the roughness of the
stainless steel and epoxy surfaces were di�erent. However, the grooves were small enough to be
far from the boundary layer separation point and consequently they are not expected to
in¯uence the wake structure. Instead of a groove, a 1 mm diameter hole was ®lled with epoxy
to attach the thread to the plastic spheres.
The blockage ratio, that is, the ratio of the sphere projected area to the test section cross-

section area, was 2.2% for the largest sphere. Modi and Akutsu (1984) have shown that
blockage e�ects on drag, the separation point of the boundary layer and the wake
con®guration are negligible for up to 11% in blockage. Thus, it is concluded that the wake
structure was not a�ected by con®nement e�ects.
A small nylon cylinder of 0.25 mm OD was glued to the capillary tube at a horizontal

distance of 6:5820:02 mm. When a laser beam hit this cylinder, a light interference pattern
arose. This pattern was used to determine the position of the hanging point and to ensure that
it did not drift during the measurements. This method yielded a more accurate determination
of the x position of the hanging point than possible measuring the hanging point position
directly (Moraga, 1998).

5.2. Optical setup

A schematic of the optical setup is shown in Fig. 18. The beam produced by a 3 mW, 633
nm wavelength laser was collimated using a 252 mm focal length lens. This collimated beam
was split into parallel beams using a mirror which was 5:9220:05 mm thick. Only the two
more intense re¯ections were used. The distance between two consecutive beams was
2:8720:08 mm. To obtain this number the distance between the ®rst and seventh mirror
re¯ection was measured and divided by 6. This distance was measured several times to ensure
that it did not changed over time. Repeatability within the range of the error bars was always
obtained. The distance between beams was ®xed by the physical size of the phototransistors

Table 4
Properties of the spheres useda

Name Material Diameter, D (mm) Weight (g) Density, rd (kg/m3)

12.7ss 316SS 12.70 8.320.1 7740290
9.52ss 316SS 9.52 3.520.1 77502200
11.8p Plastic 11.8020.05 0.9920.05 1150258

a Names are for future reference in tables.
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and the need for having the beams hit the active areas of the phototransistors. Motorola
MRD107 phototransistors were selected because they were the smallest phototransistors on the
market at the time the experiments were performed.
The beams waist, 0.082 mm, and its depth of ®eld, 20 mm, were calculated considering the

di�raction limit (Saleh and Teich, 1991) and using geometric optics (Blaker, 1971) to account
for the presence of the mirror. In this context the depth of ®eld is de®ned as the axial distance
within which the beam radius lies within a factor

���
2
p

of its minimum value (Saleh and Teich,
1991).
The horizontal phototransistor plane (see Fig. 17) was 48 mm below the non-uniform grid.

Traversing the laser-lens-mirror set in the y direction, it was found that the laser beams were
parallel to the y axis within a 0.378 angle. With a similar procedure it was found that the
beams formed a 0.0088 angle with the horizontal plane.

5.3. Data acquisition hardware and software

The data acquisition hardware that was used consisted of the already mentioned MRD107
Motorola phototransistors, an ampli®cation stage and a PC data acquisition board that sent
the signal to the selected PC interruptions. A digital oscilloscope with screen memory was

Fig. 18. Schematic of the optical setup.
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utilized to study the behavior of the circuit. The time resolution of the acquisition hardware
was 0.084 ms. This number is the result of a calibration in which a square signal of constant
and known frequency was acquired. Additional information on the data acquisition hardware
and software and the experimental procedure can be found elsewhere (Moraga, 1998; Moraga
et al., 1999).

5.4. Data processing algorithm

The main purpose of the processing algorithm was to determine the time fractions that the
thread, and consequently the pendant, spent to the sides of the laser beams for any given
position of the beams. These time fractions were then used to calculate the average position of
the thread and consequently of the sphere. From this average position the average lateral force
could be determined.
A second more easily achievable objective was to measure the velocity the pendant had

going from one beam to the other. All data processing was performed by software after the
data were acquired.
The time fractions can be estimated by using just the relative amount of pulses at each

channel and ignoring the duration of the time intervals between pulses or, alternatively, using
only the mentioned time intervals durations. Both possibilities were explored and they are
discussed below.

5.4.1. Number of pulses algorithm
The fraction of the total measurement time that the thread is at a position X > x can be

estimated to be,

TF N�X > x� � N2

N1 �N2

where x is the middle point between the beams and N1 and N2 are the number of pulses
acquired in channels 1 and 2, respectively. If x is so small that only pulses in channel 2 are
acquired, TF N�X > x� � 1, as expected. Similarly, if x is large enough so no pulses are
acquired in channel 2, then TF N�X > x� � 0. Since this estimator is not making use of all the
information acquired, it should be expected to be relatively insensitive and consequently not
the most appropriate algorithm to determine average positions. However, it has the advantage
of being robust; that is, changes in the direction of movement of the thread while a beam is
being interrupted will not introduce signi®cant error. The other great advantage of this
estimator is a lack of questionable supporting hypothesis. Thus, the results of other more
elaborate algorithms can be compared to this one in order to assess their quality. More
speci®cally, any algorithm that renders a time fraction functional dependance with x that:

1. is qualitatively very di�erent than TF N�X > x� is likely not robust or based in a valid
hypothesis.
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2. has a smaller slope than TF N�X > x� in a neighborhood of TF N�X > x� � 0:5 is more
insensitive and should be discarded.

5.4.2. Position tracking algorithm
The only assumption necessary to track the sphere position with respect to the beams from

the time sequence of beam interruptions is the following: each time a beam is interrupted the
thread moves from one side to the other of the beam. Thus, if it is known that the thread was
on the right of the beam at a given instant, after a beam interruption it will be on the left. The
details of the implementation of an algorithm based on the just stated hypothesis can be found
in the work of Moraga (1998) and Moraga et al. (1999). For the purpose of this exposition, it
is su�cient to note the assignation rules in which the algorithm is based:

Rule 1: The time spent traveling from one beam to the other, that is, time intervals for
which a pulse in a channel is followed by a pulse in the other channel, is split into two equal
parts that are assigned to the left (X<x) and right (X > x) regions.
Rule 2: Time intervals delimited by two consecutive pulses in the same channel are assigned
to the left region, for channel 1, or to the right region, for channel 2.

The symmetry of these rules clearly indicates that the boundary, x, between regions is the
midpoint between beams. From now on, the x position of the beams will be speci®ed by the x
coordinate of the midpoint between beams. Finally, the fraction of the total measurement time
that the thread is at a position X > x is estimated as;

TF PT�X > x� � ST2 � ST3=2

ST1 � ST2 � ST3
�33�

where STi; i � 1,2,3, are the total times spent on the left of the channel 1 beam, on the right of
the channel 2 beam and in between beams, respectively. They are calculated using rules 1 and 2
above.
The validation of the number of pulses and position tracking algorithms can be found

elsewhere (Moraga, 1998; Moraga et al., 1999).

6. Experimental results

Two di�erent types of pendant motion were observed, namely periodic and non-periodic.
The parameters determining if a motion was periodic or not were ¯owrate, liquid temperature,
position of the hanging point, sphere diameter and material. Within this parameter space,
repeatability of the type of motion was observed. Because of their di�erent dynamics these
regimes needed separate consideration. This paper is concerned with the non-periodic regime,
which is the most relevant for determining the lateral lift coe�cient in multiphase ¯ows. The
periodic regime's data can be found elsewhere (Moraga, 1998; Moraga et al., 1999).
Nevertheless, the very existence of a periodic regime is an indicator that lateral forces may be
strongly in¯uenced by vortex shedding.
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6.1. Velocity histograms

Accurate velocity determination is possible only when two consecutive pulses occur in
di�erent channels. For any other intervals the distance traveled by the pendant is not known
and consequently velocity determination is not possible. This limitation has two important
e�ects. First, for a given x position of the beams the number of velocity measurements is much
smaller than that of pulses acquired, and the histograms in this section do not show the
complete lateral velocity distribution but that of the ¯uctuations large enough to interrupt one
beam after the other. Moreover, as the distance from the average x position increases, the
velocity of the pendant becomes smaller and on a proportionally smaller number of occasions
two consecutive pulses occur in di�erent channels. Thus, in order to ensure that the measured
velocity distributions are statistically representative, the x position closer to the average is
always chosen. This is the region where the results are more important since the main purpose
of this histograms was to estimate the value of h 1tD

dy
dt iy�yeq

. The importance of this term was
explained in Section 2.2.
Although the velocity of the thread, ut, at the phototransistor's horizontal plane was the

magnitude actually measured, the velocity of the sphere, ud, can readily be obtained from the
former as,

ud � L

r
ut

where L and r are the radial distances from the hanging point to the sphere center of gravity
and to the position of the beams, respectively. Because of the smallness of the angle, y, formed
between the vertical and the thread, the following approximation introduces negligible error,

r ' Dz

where Dz is the vertical distance between the hanging point and the photo-transistor plane.
Typical results for the 9.52 mm stainless steel sphere are shown in Fig. 19. The distributions

shown have two peaks equidistant from the origin and are zero elsewhere.
The symmetry of the histograms suggest that the second term in hd2y

dt2
� 1

tD

dy
dt iy�yeq

is small.
More precisely, for the two positions surrounding x rest, the tethered sphere x position in the
absence of water ¯ow, in Fig. 19(b) and (c), calculation of the relative error introduced by the
large ¯uctuations velocity yields (see Eq. (22)),

t2v
tD

j
�

dy
dt

�
y�yeq

j

tan yeq

�
y�yeq

<6� 10ÿ3

where the absolute value of hdy=dtiy�yeq
is used because the sign is di�erent on the left and

right of x rest. The contribution of the average pendant velocity to the equilibrium position
error is negligible compared with the statistical error arising from the time fraction ®ts.
Unfortunately, because accelerations cannot be measured with just two beams, little can be
said about the value of hd2y

dt2
iy�yeq

. For that purpose three beams would be necessary.
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The lack of a continuum linking both peaks indicate that a minimum inertia is required to
move from one beam to another passing through the equilibrium position. For x lower than
the equilibrium position, the area under the positive peak is consistently larger than that under
the negative one, and for x larger than the equilibrium position, the area order relation
reverses. This pattern arise for all data sets. The areas under the peaks di�er by as much as
50% far from the equilibrium position and become almost identical as the equilibrium position
is approached.

6.2. Time fraction measurements

Typical pro®les of the time fractions TF PT�X > x� and TF N�X > x� are shown in Fig. 20.
For the particular case shown in the ®gure, TF PT�X > x� is negligibly steeper than
TF N�X > x�, although for other cases, the larger sensitivity of the position tracking algorithm
was more evident. Assuming that the probability that the thread at the phototransistors plane
(or the sphere at its horizontal plane) is at the interval (x,x� dx) obeys a Gaussian
distribution, it can be shown that,

Fig. 19. Typical large uctuation lateral velocity distribution for non-periodic motion of a 9.52 mm stainless steel

sphere at (a) x � 46:89 mm, TF PT�X > x� � 0:36, (b) x � 46:64 mm, TF PT�X > x� � 0:47, (c) x � 46:39 mm,
TF PT�X > x� � 0:55, and (d) x � 46:13 mm, TF PT�X > x� � 0:69. x rest � 47 mm at 268C and wjx=h�0:5 � 0:326 m/s.
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TF�X > x� � 1

2

�
1ÿ erf

�
xÿ x0

s

��
�34�

where x0, s and erf are the average value and the standard deviation of the Gaussian
distribution and the error function, respectively. It must be noted that the hypothesis of a
Gaussian spatial distribution ignores kinematic considerations. That is, information on speed
and acceleration is ignored. Eq. (34) was used to determine x0 and s and the respective errors
from the measured TF PT�X > x� through a non-linear ®t using the Levenberg±Marquardt
algorithm, as implemented in the Microcal2 Origin2 software package. The result of these ®ts
are represented by the solid line in Fig. 20.
In order to make results independent of the value of x rest, the average displacement, de®ned

as,

Dx � x0 ÿ x rest

was used instead of x0 in Fig. 21. It must be stressed that because Rer is not explicitly stated,

Fig. 20. Measured time fractions, TF PT�X > x� and TF N�X > x�, for 9.52 mm stainless steel sphere, x rest � 47 mm,
wjx=h�0:5 � 0:228 m/s and 268C.
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this plot is by itself incomplete, requiring the extra information of the relationship between
both Reynolds numbers, which can be found in Fig. 12. It should also be noted that inviscid
theory predicts, contrary to the results shown in Fig. 21, Dx<0. That is, inviscid lift should
move the sphere toward the high velocity side. Moreover, because the plastic sphere was
lighter, it can be more easily displaced from the vertical. This explains the consistently larger
displacements, Dx, of the plastic sphere in Fig. 21.
The factor determining the minimum Reynolds numbers that can be used in this experiments

is the minimum distance achievable between phototransistors, which in turn is determined by
the phototransistors size. As the ¯owrate diminishes so does the amplitude of the oscillations.
When this amplitude is so small that the laser beams are not interrupted often enough, the
uncertainty of the measurements increases. That is the reason for the large error bar
corresponding to the smallest Re in Fig. 21.

Fig. 21. Average displacement, Dx � x 0 ÿ x rest, vs. Reynolds number.
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6.3. Force measurements

Force determination was based on a static force balance that relates the average departure
from the vertical position, Dx; determined in Section 6.2, to the lateral force due to the
uniform velocity gradient. As was seen in Section 2.2, the implicit hypothesis is that at the
equilibrium position determined by Dx, time averaging of the instantaneous forces will cancel
out any instantaneous ¯uctuations and leave only the net e�ect of the lateral forces.
From Fig. 17, and a balance of forces in the horizontal and vertical directions, the non-drag

lateral force on the sphere is,

Lateral
Force

�
�
p
6
D3�rd ÿ r�g� p

8
CDD

2r
����������������
w2 � u2

p
w

�
Dx
Dz
ÿ p

8
CDD

2r
����������������
w2 � u2

p
u �35�

where the parenthesis in the ®rst term represents the sum of buoyancy and vertical drag and
the second term is the drag in the horizontal direction. The drag coe�cient, CD, is calculated
taking into account the absolute value,

����������������
w2 � u2
p

, of the liquid velocity. The total drag is then
projected in the vertical and horizontal directions to obtain the corresponding components in
Eq. (35). It should be stressed that u� w, thus the error introduced if the drag coe�cient were
calculated using the absolute value of w only, would not be large. Yet, it is necessary to
introduce a lateral drag correction to make sure that the lateral forces are due to the local
dw=dx and not to the u velocity. All the velocities in Eq. (35) were evaluated at (x rest,y � 38:1
mm, z � 76:2 mm). The smallness of Dx and the smooth variation of the velocity ®eld makes
the error introduced by evaluating velocities at xrest of the order of 1% of this velocity. This
small variation will have negligible impact on the lateral force error compared with the Dx
error.
The drag coe�cient was evaluated using the standard drag curve for sphere submerged in an

uniform ¯ow as recommended by Clift et al. (1978), which, in the range of interest for this
work, is:

CD �

8><>:
10�1:6435ÿ1:1242r�:1558r2� 2:6� 102<Re<1:5� 103

10�ÿ2:4571�2:5558rÿ:9295r2�:1049r3� 1:5� 103<Re<1:2� 104

10�ÿ1:9181�:6370rÿ:0636r2� 1:2� 104<Re<4:4� 104
�36�

where

r � log10�Re�

According to Eq. (36), CD varies smoothly and continuously between approximately 0.45 and
0.40. Yamamoto et al. (1993) measured drag coe�cients in a uniform shear ¯ow for Reynolds
numbers ranging between 1:2� 104 and 3:8� 104. These researchers found that the average
drag coe�cient for di�erent values of the shear was CD � 0:4620:03, in good agreement with
the standard drag curve. The drag measurements of Yamamoto et al. (1993) were conducted
downstream of a grid similar to ours, with a 5% turbulence intensity, while our measurements
are for a 8% turbulence intensity. Given the similarities in the grids and turbulence intensities
between this work and that of Yamamoto et al. (1993) the standard drag curve should be
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applicable to our measurements. Dandy and Dwyer (1990) have shown that CD is insensitive to
shear for Reynolds numbers up to 100. Clift et al. (1978) report that CD is rather insensitive to
particle spin from Reynolds numbers between 4:6� 104 and 1:1� 105. The comparison is
appropriate because particle spin is expected to distort the shape and position of the wake in
forms similar to that of shear. From the work of all these researchers it was concluded that it
was reasonable to use the standard drag data for uniform ¯ows to calculate drag in a
shear¯ow.
The measured lateral force as a function of the Reynolds number can be seen in Fig. 22.

Comparison with Fig. 21 shows that the data for plastic spheres tend to collapse with those of

Fig. 22. Measured lateral force vs. Reynolds number.
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steel for similar Reynolds numbers. This is because plastic is lighter, thus the same lateral force
pushes the equilibrium position of plastic spheres further away form the vertical.
The magnitude of the lateral drag correction deserves special attention. The ratio of the

lateral drag correction (i.e., the second term in Eq. (35)) and the total lateral force is detailed
in Table 5. It ranged from ÿ25 to 25%, but for some sets of data it varied, in absolute value,
between 1 and 5%. There were only two data points that did not ®t in the 225% range
because the total lateral force was small. These two points were not considered representative
because the ®rst and second term in Eq. (35) had di�erent signs but similar magnitudes.
Nevertheless, this brings out another important fact about the lateral drag correction. Since the
sign of uc velocity was positive or negative depending on x rest, the lateral drag correction could
be either negative or positive. For the particular case of uc<0 the correction has the same
direction as the inviscid lift force. Thus, this correction tended to enhance inviscid lift e�ects.
The sources of error considered for the error calculation were those associated with u, w and

Dx. The error of the vertical velocity was statistical in nature and was conservatively set as
Dw � 7� 10ÿ4 m/s (see Table 2). This number correspond to the largest observed error of the
average velocity w at the sphere rest positions considered. The error of the lateral liquid
velocity was calculated as Du � 4:9� 104 � sin�0:2p � 180�w; where the ®rst term is a
conservative value for the statistical error in the determination of u and the second takes into
account the error, 20:28, in the measurement of the angle the test section formed with the
vertical.
The error of Dx was obtained from the time fraction ®ts. For most of the cases the Dx error

accounts for more than 90% of the total force error. The exception being the measurements at
558C, for which the Dx error ranged from 20 to 40% of the total. Practically all of the
remaining lateral force error came from that of u, since the relative importance of the w error
was negligibly small with respect to that of u and Dx. It is worth noting that velocity gradient
errors are not relevant for the determination of the lateral force, but rather for the lift
coe�cient.

7. Data analysis

The most striking feature of the present data is that for most cases the lateral force on the
spheres has the opposite sign to that predicted by inviscid theory, and thus, these data di�er
from those of all other researchers, with the exception of Yamamoto et al. (1993). Unlike the

Table 5
Lateral-drag/total-lateral-force ratio

Sphere x rest (mm) lateral drag
total lateral force

(%)

9.52ss 47 ÿ25 to 25
9.52ss 25.75 ÿ5 to 1
12.7ss 25.75, 47 ÿ5 to 10

12.7ss several x rest at 558C 1 to 5
11.8p 25.75, 47 ÿ20 to ÿ15
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study of Yamamoto et al. (1993), this discrepancy cannot be attributed to lateral drag. It
should be recalled that the lateral drag correction introduced into the force determination
represented a percentage of the total force too small to be responsible of a change of sign (see
Table 5). Moreover, for some data points the lateral drag correction was in the direction
predicted by inviscid theory.
The sign reversal has been discussed in Section 2.1 on the ground of vortex shedding and

wake asymmetries being dominant over the traditional inertia e�ects expected in a
con®guration without boundary layer separation. That is, if the Reynolds number were
reduced, a change of sign would be found as vortex shedding becomes less important. In the
remaining part of this section it will be shown that many facts support this point of view.
It has been shown in Section 2.1 that wake e�ects on lift should have the same functional

dependance as inviscid lift. Hence, it is appealing to ®t the data using a non-dimensional form
of that functional dependance (see (6)),

Measured lateral force

pv2r=6
� CLTRe Rer �37�

where CLT � CLT�Re Rer� is the total (inviscid and wake e�ects) lift coe�cient which depends
only on the product Re Rer, and is given by:

CLT � CL0exp

�
Re Rer
�Re Rer�0

�
�38�

where CL0 is the value of the lift coe�cients at small values of the product Re Rer and
�Re Rer�0 represents a lower bound of the region for which CLT is much larger than CL0. The
result of a non-linear ®t to Eqs. (37) and (38), with error bars as weighting factors and utilizing
the Levenberg±Marquardt algorithm as implemented in the Microcal2 Origin2 software yields
for the high Reynolds number data presented herein:

CL0 � 0:1720:04 �39�

�Re Rer�0 � �4:220:1�107 �40�

It can be seen in Fig. 23 that this ®t follows the data very closely. Perhaps its only drawback is
that it is not suitable for extrapolation to values of Re Rer below the measured range, and as a
consequence it does not predict the expected change of sign as the product of the Reynolds
numbers diminishes. It must also be remembered that for the shear ¯ow used in this work, the
turbulence length scales are small with respect to the particle size. Thus, the ®t given by Eqs.
(37)±(40) is strictly valid only when turbulent length scales are small compared with the
particle size.
Let us next consider extending Eq. (37) to the lower Reynolds numbers.
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8. Comparison with other researchers work

8.1. Solid particles at high Re ReH

The data of Yamamoto et al. (1993), acquired using three di�erent grids also correlate with
the product Re Rer. However, Yamamoto et al. (1993) measured somewhat larger lift
coe�cients than those obtained in the present work. Very probably the di�erence is due to the
fact that Yamamoto et al. (1993) did not introduce a correction for lateral drag. Since they did

Fig. 23. Fit of measured lateral force vs. the product Re Rer.
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not measured the lateral velocities it is not possible to quantify the systematic error that was
introduced. However, the fact that similar lift coe�cients were obtained by Yamamoto et al.
(1993) for free falling spheres and pendants at a ®xed distance from the grid, suggest that the
value of the correction introduced by drag is relatively small.
Turbulent uniform shear ¯ows are quasi-self-sustained (Owen and Zienkiewicz, 1957;

Moraga, 1998). This has been found to be particularly true in air loops, as the used by
Yamamoto et al. (1993, 1995). Thus, it is not so surprising that the lateral drag experienced by
a particle traveling downstream of the grid is small and relatively independent of the distance
to the grid.

8.2. Solid particles at intermediate Re ReH

AlajbegovicÂ (1994) and AlajbegovicÂ et al. (1994) ®tted lift coe�cients applying the two-¯uid
model to experimental data of solid spheres submerged in a ¯uid moving upwards in a vertical
pipe. It was found that CL � ÿ0:15 and ÿ0.01 for ceramic and expanded polystyrene particles,
respectively. The minus sign indicates that the lift force found by AlajbegovicÂ (1994) and
AlajbegovicÂ et al. (1994) is in the direction predicted by inviscid lift. The good agreement
between the experimental results and the simulations with the two-¯uid model, which models
the lateral force using a traditional inviscid lift formulation, suggest that in the range of
relative velocities and shear investigated by AlajbegovicÂ , lift forces follow the inviscid lift
functional dependance. However, just one value of the lift coe�cient was used for the whole
range of the product Re Rr, which varied between zero at the pipe's center line and 106 close
to the wall. Nevertheless, these data imply that the cross sectional average lift coe�cient is
CL � ÿ�0:0820:04�. This value of CL, and its error, are in agreement with that reported in the
literature for fully developed bubbly ¯ow in a pipe (Wang, 1986; Wang et al., 1986; Lahey et
al., 1993).
As it was explained in Section 6.2, measurements were not carried out for Re<1000, since

the experimental uncertainty was too large in this region. However, extrapolation for smaller
values of the product Re Rer is desirable to study consistency with the inviscid lift formulation
as implemented in two-¯uid models. Hence, in order to make a ®t combining the pipe ¯ow
data and those of the present work the following correlation is recommended:

Lateral force

prn2=6
�
�
CL0 ÿ DCLexp

�
ÿ Re Rer
�Re Rer�1

��
exp

�
Re Rer
�Re Rer�0

�
Re Rer �41�

For DCL � 0 the expression successfully used to ®t the experimental data measured in this
study is recovered. The DCL term is necessary to model the dominance of inviscid lift over
wake e�ects at low values of Re Rer. Note that CL0 ÿ DCL is the value of the lift coe�cient for
Re Rer � �Re Rer�1. The parameter �Re Rer�1 is related to the critical Re Rer for which the
total lateral force is zero.
The resulting ®t can be seen in Table 6 and in Fig. 24. This correlation for the lift force

coe�cient may be used in two-¯uid models. It can be noted that not only is the lift coe�cient
practically constant, and close to the desired value at the lower range of Re Rer, but also the
zero lateral force product of Reynolds numbers has increased to �Re Rer�zero lift � 2:2� 105,
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which corresponds to a pipe radius of r=R10:9, a value more consistent with the observed wall
peaking in upwards fully developed ¯ow. Therefore, the recommended ®t of the total lift
coe�cient, valid in the range 6� 103RRe Rer<5� 107, is:

Table 6
Best ®t of this study's data and that of AlajbegovicÂ et al. (1994). The last column indicates the value of Re Rer for
which the total lateral force is zero

�Re Rer�0 107 CL0 �Re Rer�1 104 DCL �Re Rer�zero lift 10
4

3:020:7 0:1220:03 362400 0:220:2 22

Fig. 24. Lift coe�cients best ®t to the data in this study and the data of AlajbegovicÂ et al. (1994).
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CLT �
�
CL0 ÿ DCLexp

�
ÿ Re Rer
�Re Rer�1

��
exp

�
Re Rer
�Re Rer�0

�
�42�

where the coe�cient values can be obtained from Table 6. The large relative error of �Re Rer�1
is due to the fact that the recommended ®t is an interpolation since there are no data in
the intermediate range 6� 104<Re Rer<1� 106. It must also be remembered that the
recommended ®t is only valid for ¯ows with characteristic turbulence length scales smaller then
the particle size.

8.3. Solid particles at low Re ReH

There are many determinations of the lift coe�cient in the bubbly two-phase ¯ow literature.
However, in very few instances are the data sets complete enough to rearrange them to a form
appropriate for comparison with this work. One of the experimental works that allows
comparison is that of Eichhorn and Small (1964), who measured lift forces on solid spheres
submerged in a Poiseuille ¯ow for Re and Rer ranging from 80 to 250 and 0 to 360,
respectively. These researchers levitated spheres in an inclined tube through the balance of
buoyancy, drag and lateral forces. As was done by many other authors, they de®ned the lift
coe�cient by analogy with the drag coe�cient,

CLaero � Measured lateral force
p
8
rD2w2

, �43�

which is related to the lift coe�cient measured in this work by the relation,

CLT � 3Re

4Rer
CLaero �44�

Dandy and Dwyer (1990) calculated lift coe�cients as de®ned in Eq. (43) for Re and Rer up
to 100 and 16, respectively. The upper bound of the Reynolds number was set to avoid
boundary layer separation. Thus, no wake e�ects are present in the results of Dandy and
Dwyer. The works of Eichhorn and Small (1964) and Dandy and Dwyer (1990) indicate that
the lift coe�cient is not a function of the product Re Rer for Re<250. This is attributed to the
Reynolds number being too small for the hypothesis of inviscid theory to be valid. Finally,
Mei (1992) was able to correlate the data of Dandy and Dwyer (1990) with the non-
dimensional numbers, Re and a � Re1=2r =Re, using the functional dependance derived by
Sa�man (1965, 1968) for the lift experienced by a sphere in a slow (Re<1) shear ¯ow.

8.4. Comparison with numerical results

Due to the large computational power necessary to accurately resolve the wake behavior,
numerical results are available only for cylinders but not for spheres. In Section 2.1 it was
shown that the average lateral force should follow the same qualitative behavior for cylinders
and spheres. However due to di�erence in the wake structure and, to a minor degree, in the
stretching of vortex lines of the incoming ¯uid, the quantitative results should not be the same.
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Therefore, numerical simulations are useful to identify relevant mechanisms, the force direction
and how it changes with the Reynolds numbers. Jordan and Fromm (1972) calculated the force
on a cylinder submerged in a weak shear ¯ow at Re � 400. They found that the instantaneous
lateral force oscillates in synchronization with the boundary layer separation point at both, the
¯ow and high velocity side, and the average lift force was toward the low velocity side.
AlajbegovicÂ et al. (1998) conducted numerical simulations for a ®xed cylinder. The values of
Re and Rer belongs to the range used in the present work. These researchers found that the
instantaneous lateral force oscillates around its average value and changes sign during each
period. Moreover, the absolute value of the maximum instantaneous lift coe�cients is much
larger than that of the average coe�cient.

9. Summary and conclusions

Rigid spheres attached to a tether were submerged in a turbulent uniform, downward, shear
¯ow. As the tether interrupted two parallel beams, photo-transistors acquired the time
sequence of beam interruptions, which was then sent to a PC for processing. From these data
it was possible to determine the velocity and time fraction distributions. Two di�erent methods
were developed to measure time fractions as a function of position. The measurement methods
require that the amplitude of the oscillations be large enough for both beams to be interrupted.
Thus, the distance between beams is the main parameter determining the lowest Reynolds
number, Re, for which the measurements can be conducted.
Time-averaged lateral forces were determined from the time fraction measurements through

a static force balance among buoyancy, drag in the streamwise and lateral direction and lateral
forces due to the mean shear. The methodology of the experiment is very similar to that of the
two-¯uid model since only average magnitudes of the ¯ow are used to calculate the forces. This
fact makes the results particularly suitable for application in two-¯uid models. The error
introduced by considering a static force balance and neglecting the average velocity and
acceleration was estimated as three orders of magnitude smaller than the measured value.
Special attention was given to the lateral drag contribution in order to measure it as

accurately as possible and to keep it small compared with the lateral forces produced by the
mean shear. This work is the ®rst in which lateral velocities in a turbulent uniform shear ¯ow
are reported. The slow decay of the uniform shear induce small lateral velocities. This in turn,
makes it possible to have reliable measurements of the lateral forces due to the mean shear
without a privileged direction for the lateral drag correction.
As expected from considerations of the kinetic energy of the turbulence in the wake, vortex

shedding produces a lateral force opposite in direction to that of inviscid lift. The main non-
dimensional parameter controlling the total lateral force was found to be the product of
Reynolds numbers, Re Rer. At high values of Re Rer wake e�ects dominate and the lateral
force is toward the low velocity region. At smaller values of Re Rer inviscid lift reverses the
direction of the lateral force. These ®ndings are quanti®ed in Fig. 24. Evidence was found that
the non-dimensional parameter Re Rer is by itself insu�cient to describe the behavior of the
lift coe�cient since the Reynolds number, Re, plays an important role too. This result was to
be expected since Re is the main parameter determining wake structure.
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Measurements of other researchers for Re<300 do not correlate with the product Re Rer.
This fact is complementary evidence that only wake and inertia e�ects on the body, not the
viscous contribution, are correlated by the parameter Re Rer. Signi®cantly, the density of the
sphere was found to have very little impact on lateral forces. This is an indication that small-
amplitude, non-periodic pendant dynamics are similar to that of a ®xed sphere.
Since the correlation developed in the present work, Eq. (41) is a local one, it should

improve the accuracy and prediction capabilities of two-¯uid models. In particular, it should
help eliminate the need for ®tting global lateral lift coe�cients to experimental data, which
limits a priori prediction capabilities.
The research presented herein not only provides a useful quanti®cation of lateral forces in

realistic conditions, but it also highlights the importance of vortex shedding instabilities in
multiphase ¯ows.
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